Suspended sediment concentration estimation using artificial neural networks and neural-fuzzy inference system case study: Karaj Dam
نویسندگان
چکیده
منابع مشابه
Using Artificial Neural Networks for Modeling Suspended Sediment Concentration
For continuous monitoring of river water quality , this study assesses the potential of using artificial neural networks (ANNs) for modeling the event-based suspended sediments concentration (SSC) in Jiasian diversion weir in southern Taiwan. The hourly data collected include the water discharge, turbidity and SSC during the storm events. The feed forward backpropagation network (BP), generaliz...
متن کاملestimation of the suspended sediment loud of karaj river using fuzzy logic and neural networks
correct estimation of suspended sediment transported by a river is an important practice in water structure design, environmental problems and water quality issues. conventionally, sediment rating curve used for suspended sediment estimation in rivers. in this method discharge and sediment discharge or concentration related using regression relation that generally is exponential model. respect ...
متن کاملSuspended Sediment Estimation and Forecasting using Artificial Neural Networks
The methods available in the literature for sediment concentration estimation are complicated and time consuming and necessitate cumbersome parameter estimation procedures. In this study, artificial neural networks (ANNs) are used to forecast and estimate sediment concentration values. The forecasting results obtained using previously observed sediment values were close to the real ones. The se...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2012
ISSN: 0974-6846,0974-5645
DOI: 10.17485/ijst/2012/v5i8.6